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SUMMARY 

The temperature dependence of mutual diffusion coefficients in the binary gas 
mixtures C,H, + He, C,H, + He, C,H, + He, C,H, + N,, C,H, + N, and C,H, + N, 
has been studied experimentally, using the reversed-flow gas chromatography samp- 
ling technique reported earlier. An improved sampling procedure was developed 
theoretically and applied, giving reversal-peaks twice the height of those obtained 
previously, thus increasing the sensitivity and precision of the method. The 43 diffu- 
sion coefficients determined for the above six binary gas mixtures at various tempera- 
tures show an average difference of 4.4% from those calculated using the Fuller- 
Schettler-Giddings equation. The mean exponents in T”, giving the temperature de- 
pendences of gas diffusion coefficients, were in accord with results given in the litera- 
ture. 

INTRODUCTION 

The temperature dependence of diffusion coefficients in binary gas mixtures 
has been the subject of many theoretical investigations, all of which lead to a power 
dependence T”, but with different values of n. No systematic experimental study 
seems to have been carried out in order to verify the various theoretical or semi- 
empirical equations describing the above dependence. A possible reason for this was 
the lack of a simple and accurate enough experimental method for measuring diffu- 
sion coefficients at relatively high temperatures. One such method, however=, has been 
reported recentlyI, which uses the detector and the gas lines (modified) of a conven- 
tional gas chromatograph to pass one component B (the carrier gas) through an 
empty chromatographic column. About midway along this column a diffusion 
column is connected perpendicularly to the first. This diffusion column is a straight, 
relatively short (cu. 60 cm) piece of empty tubing (4 mm I.D.), closed at the other end 
with a conventional rubber septum. Through this the other gaseous component A 
(the solute gas) is introduced by injection with a syringe. 

Gas A is now allowed to diffuse into B inside the latter column, establishing a 
diffusion flux at the junction of the two columns. The pure carrier gas B passing over 
this junction carries to the detector the flux of A set up in the diffusion column. The 
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amount of A entering the chromatographic column within a small fixed time interval 
is recorded as a function of time, by repeatedly sampling this column. This so-called 
“chromatographic sampling” is accomplished by reversing the direction of the flow of 
B from time to time, using a suitably connected simple six-port gas valve. 

The chromatographic sampling creates at the detector extra peaks, the heights 
of which vary with time. The analytical mathematical expression describing this vari- 
ation has been derived’ and used to determine the diffusion coefficient of A into B. 
Using this method the diffusion coefficient in fifteen pairs of gases was determined’ 
and compared with the corresponding theoretical values, and with eight literature 
values obtained by other methods. It was shown that the reversed-flow method de- 
scribed above has a precision of 0.9 ‘A and gives values of diffusion coefficients closer 
to the theoretical calculated’ values than the literature ones. 

All of the diffusion coefficients reported in the earlier paper’ are referred to 
ambient temperature (ca. 23°C). In this work, we used the oven of the chromatograph 
to study the temperature variation of diffusion coefficients in six binary gas mixtures. 

THEORETICAL 

The basic equations describing the concentration in space and time of the 
solute A in the mixture of A and B have been derived. At the junction of the two 
columns (z = L, x = Y) this concentration is (c$, eqn. 12 and Fig. 1 in ref. 1): 

c,V,t,) = 
N exp( - L2/4Dt,) 

312 
to 

(1) 

where 

N = n-~L/ri(nD)“~ (2) 

However, the chromatographic sampling equation (eqn. 30 in ref. l), 

c, = c,(r, ttot - T) . [u(z) - u(z - tb)] *u(t’ - 7) + c,(r, ttot + 7). U(T) (3) 

where 

z=t-tt, (4) 

and t LOt = to + t’, was found only for the case t’ > th + t,, i.e., when the time passing 
between two successive reversals was greater than the total gas hold-up time in both 
sections Z’ + I of the chromatographic column. In this paper we take a further step 
and generalize the sampling theory so that it includes also the case t’ < t; + t,. As 
before, we start from the mass balance equation (eqn. 14 in ref. 1) with t substituted 
for to: 

ac,_ 
at 

- 4.g + v(c,),,I’s(x - 1’) (5) 



TEMPERATURE VARIATION OF DIFFUSrON COEFFICIENTS 17 

This is integrated by taking successive Laplace transformations with respect to t,, f’ 
and t, but now with a different initial condition at t = 0 than before, as the inequality 
t’ > t; + t, does not necessarily hold true. The new initial condition (in the form of 
its t, and t’ double transform) is obtained from the whole of eqn. 24 in ref. 1 instead 
only from its last term. By making the necessary coordinate transformations from x’ 
to X, the desired condition at I = 0 reads: 

cx ~.wJ,p’,O) = ~~~Of) (exp( -pOB). u(x - P) + 

+ exp@‘B) .[I - u(x - P)} - exP I - Q. f P’> 0 + P’W + 

+ Cx(l+lo,p’) *expCp’@ . [l - U(X - r)] (6) 

where 

e = (x - lyv (7) 

The result of the above procedure is an ordinary differezial equation in x, which is 
easily integrated by using x Laplace transforms, giving C,(x,p,,p’,p>: 

c = CJ~~PO~O> 
x 

P’ + PO i 

ew(-p,Q - exp(-p0) . u(x _ r) + 

P - PO 

exP@‘fl) - exp(+) .u(x _ rj + exp(p’.x/v> - exp( -JJX~V) x 

P +-P( P + Pf 

X eXp ( - @P/v) [l - exp ( - pot/v). exp (- p’ljv)] 
I 

f 

+ CKPWP’) 
p + p, MW@ - exp[- (P’P + Mlvl +- 

- [exr%f@) - exp(-p0)]. 24x - 2’)) + 

f C(P,po,p’,p). exp( -p$) . U(X - P} @I 

At the detector, i.e., for x’ = 1’ + 1, u(x - 1’) = 1 and 67 = I/v = tM, whereby eqn. 8 is 
considerably simplified. Then, performing inverse Laplace transformations with re- 
spect to p, p’ and p0 in succession, one finds the fmal equation giving the c, value at 
the detector: 

c, = cx,j(l,to + t’ -t ‘t)‘U(Z) + 

+ C,,$(Y,IO + f - r)*[l - 26(r - t’)J. [u(t) - zf(t - tb)J f 

+ cx,,(l’J, - t’ + 7).u(t, + f - c‘) x 

{u(t - t’) [I - u(‘t - th)] - u(z - t’) [u(e) - U(T - tt)]] (9) 
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where r is given by eqn. 4. 
Eqn. 9 is the general chromatographic sampling equation and deserves some 

comments. It contains on the right-hand side three concentration terms like that of eqn. 
1. These terms, denoted c,,r , c,,~ and cX,a, all refer to x = I’ but to different values of 
the time variable, namely t, + t’ + z, t, + t’ - t and t, - t’ + T, respectively. Each 
of the concentration terms is multiplied by a combination of unit step functions, so 
that it appears in certain time intervals and vanishes in all others. The various possibil- 
ities that exist depend on the relative values oft,, t’, t, t, and t&. As a first case one 
takes the condition t’ > t, + th. which reduces eqn. 9 to eqn. 3 as the term c, 3 
becomes zero for all values oft. Thus, the sampling equation of the previous paper1 
(eqn. 30) is a special case of the more general eqn. 9. This case produces two series of 
peaks, R- and F-peaks. 

The other special case arises when t’ < t, + th and is analysed as follows. The 
first term’of eqn. 9 c~,~ appears at t = t, (t = 0) and continues uninterrupted. The 
second term c,,~ appears again at t = tM, but it is cut down either at t = t, + t’ (t = 
t’) or at t = t, + th (z = t&j, whichever comes first. This, of course, depends on 
whether t’ < tk or t’ > tL. 

The third term c,,~ appears at t = t’ and vanishes at the same t value as the 
second term. Thus, for r 2 t’ or r 2 tL only c,,i remains as an “ending baseline”. 

I I I I \ 
2.0 1.5 1.0 0.5 

t/min 

(b) 

Fig. 1. (a) Elution curve predicted by eqn. 9 for t’ < rm and t’ < tb; (b) curve found experimentally for the 
diffusion of C,H, into He, at 373.9”K and V = 0.34 cm3 set-’ (corrected). 
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Fig. 2. (a) Theoretical elution curve for t’ > fM and t’ > t$; (b) experimental curve for the diffusion of 
C2H4 into He, at 373.9X and 6’ = 0.34 cm3 see-‘. 

Before that there are two possibilities: (i) t’ -=c t,, or (ii) t’ > t,. In case (i) the c,,~ 
term appears first and then “sitting” on it the sum c,,~ f c,,~. This is depicted 
diagrammatically in Fig. 1 a, while Fig. 1 b gives an actual experimental curve belong- 
ing in this situation. In case (ii) the sum c,,~ + c,,~ appears first and then on it c,,~ 
(Fig. 2). 

As the c,,, and c,,~ terms differ little in their time argument, the situation 
depicted in Fig. 1 has the appearance of a relatively narrow peak of two terms, with 
baseline the remaining term (c,,~ as the starting and c,,~ as the ending baseline). The 
smaller t’ is, the narrower this peak becomes, as its width is clearly equal to t’. 

The situation in Fig. 2 is less favourable for measurements, because a single 
term (Q) appears to “sit” on a starting baseline consisted of two terms (c,,~ + c,,J 
and on an ending baseline of only c,,~_ The relative heights of the various concentra- 
tion terms in the actual experimental curves of Figs. 1 and 2 are not exactly those 
predicted by eqn. 9, owing to diffusional spreading of the peaks in the chromato- 
graphic column. 

In this paper the conditions of Fig. 1 were adopted, i.e., t' was smaller than 
both t, and t$. As the extra peaks like that of Fig. 1, produced by the double flow 
reversals, are fairly symmetrical, their maximum corresponds to t = t, + t’/2 or t = 
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t’j2. The height h of this maximum, measured from the ending baseline, gives the sum 
c X,2 + %,3* From eqn. 9, by putting r = t’/2 in these two terms, one obtains 

h = C,,l(p,tO + t’/2) -t c&J(YJO - t//2) (10) 

The times in the two terms on the right-hand side differ only by t’, and as this was only 
30 set, both terms can be taken at a mean time t,. Then eqn. 10 becomes simply 

h % 2c,(P,t,) (11) 

Thus the double flow reversal produces peaks of twice the height of those with the 
single flow reversal reported earlier, and consequently increases the precision of the 
method. 

Finally, using eqn. 1 in place of cx(l/,tO), eqn. 11 gives 

h _ ZNexp( - L’/LiDt,) 

tp 
(12) 

i.e., a relationship analogous to eqn. 36 in ref. 1. Thus, by plotting ln(l~t~‘~) against 
I/&, we find D from the slope - L2/4D of this linear plot. An example is given in Fig. 

Fig. 3. Plot of eqn. 12 for the diffusion of C,H, into N2 at 388.5% and 1 atm. 

EXFERIMENTAL 

Materials 
The carrier gases (helium and nitrogen) were obtained from Linde (Greece) 

and had a purity of 2 99.99 %. The solutes ethene (99.98 %) and propene (99.7 %) 
were purchased from Matheson Gas Products, and ethane (puriss grade) was ob- 
tained from Fluka. 
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Apparatus 
The experimental details of the application of the reversed-flow method have 

been described elsewhere’. One modification in this work was to coil the diffusion 
column L (111.4 cm x 4 mm I.D.) and place it inside the chromatographic oven, with 
its closed end at the injector position of the chromatograph. The two lengths, I and 1’, 
of the empty chromatographic column (99.4 and 99.7 cm x 4 mm I.D.) were also 
inside the oven as before. Temperature variations in the oven were less than -t_ O.l”C. 
The carrier gas flow-rates (corrected tZi the column temperature) were in the range 
0.29-0.47 cm3 set-‘. 

Procedure 
The procedure for chromatographic sampling outlined in the Theoretical sec- 

tion was adopted, giving reversal-peaks almost twice the height of those obtained pre- 
viously, thus increasing the sensitivity and precision of the method, The details are 
as follows, 

The carrier gas B is flowing in direction F (c$, Fig. I in ref. l), and 0.5 cm3 of 
the solute A are injected into the diffusion column L as before. When the asymmetric 
elution curve of A in B starts to be recorded by the detector, the direction of the 
carrier gas flow is reversed for a time period shorter than the gas hold-up time in both 
column sections 2 and P, and then it is restored again to the original direction F. After 
a certain dead time an extra signal is recorded, the shape of which is shown in Fig. 1, 
This double reversal of the flow is repeated several times with, always the same dura- 
tion (30 set) of backwards flow. This gives rise to a series of peaks corresponding to 
various times from the solute injection. 

The pressure drop along column !’ f I was negligible, and the pressure at the 
injection paint was measured with an open mercury manometer. 

RESULTS AND DI$@!JSSION 

Using eqn. 12, the mutual diffusion coefficients in six binary gas mixtures were 
determined at 1 atm pressure and various temperatures. These are &ven in Tables I 
and II, The precision of the vah~es for LI given in these tables is high, as judged from 
the associated standard errors. The accuracy given in the last column is the deviation 
of the experimental values from those calculated theoretically: 

Accuracy (%) = 1 DfOuO~- Dcalcd.l . I()0 (13) 
found 

The theoretical values were computed using the Fuller-Schettler-Giddings (FSG) 
equation* : 

D= 

0,001 7‘lS7s (; + &--I2 

P[(cv,>;‘” + (&5&‘3]2 (14) 

where (vi}, and (vJB are the atomic volume increments of the solute and carrier gas, 
respectively, referred to as “diffusion volumes”. Values of the latter are listed in Table 
I in ref. 2. 
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TABLE II 

DIFFUSION COEFFICIENTS OF THREE SOLUTES INTO CARRIER GAS NITROGEN, AT 
VARIOUS TEMPERATURES AND 1 atm PRESSURE 

Solute 
gas 

T 103D(cmz secC’) Accuracy 

This work Calculated 
i%) 

322.8 172 f 0.2 170 1.2 
345.7 193 + 0.2 191 1.0 
365.0 214 f 0.7 210 1.9 
388.5 242 f 0.3 234 3.3 
407.6 256 + 0.2 255 0.4 
427.5 282 & 0.4 277 1.8 
449.3 303 + 0.5 302 0.3 
322.8 189 + 0.08 179 5.3 
344.7 213 * 0.1 200 6.1 
364.2 234 & 0.3 221 5.6 
387.6 260 + 0.3 246 5.4 
407.5 286 + 0.4 269 5.9 
428.9 306 & 0.3 294 3.9 
449.8 335 f 0.9 319 4.8 
342.8 143 * 0.2 138 3.5 
344.6 164 f 0.1 155 5.5 
387.4 202 f 0.2 190 5.9 
406.4 220 + 0.4 206 6.4 
428.9 243 + 0.3 227 6.6 
459.0 266 + 0.2 255 4.1 

I 
I I I I 

5.7 5.8 5.9 6.0 6.1 

In (T/-K) 

Fig. 4. Plot of eqn. I5 for the diffusion of C,H, into He. 
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TABLE III 

VALUES OF THE EXPONENT n OF EQN. 15 CALCULATED FROM THE PRESENT EXPERI- 
MENTAL DATA (nfound) AND FROM THEORETICAL DIFFUSION COEFFICIENTS (CALCU- 
LATED FROM HIRSCHFELDERPBIRD-SPOTZ EQUATION) (izcslcd) 

Carrier 

w 

He 

N, 

Solute 

gas 

C,H, 
C,H, 
CaHs 
Mean 

CZHB 
C,H, 
C,H, 
Mean 

nf0ll.d fkcd. 

1.60 + 0.01 1.680 + 0.002 
1.59 * 0.03 1.671 + 0.002 
1.63 + 0.02 1.685 * 0.003 
1.61 + 0.01 1.679 f 0.001 

1.73 f 0.04 1.801 f: 0.008 
1.71 + 0.02 1.779 * 0.005 
1.77 f 0.05 1.844 f 0.008 
1.74 * 0.02 1.808 + 0.004 

in which the exponent n varies from one system to another. The mean values of nfound 
listed in Table III are somewhere between the 1.5 suggested by the Stefan-Maxwell, 
Gilliland and Arnold equations3 and 1.81 predicted by the Chen-Othmer equation3. 
A value of 1.75 is also predicted by the Huang4 and the FSG equations. * 

Seager et ~1.~ investigated experimentally (with a different method) the tem- 
perature dependence of gas-gas and gas-liquid vapour diffusion coefficients. They 
found that the value of exponent PI varied rather widely from one system to another. 
Their average value of n (1.70) was very close to our experimental values. Hargrove 
and Sawyer6 determined the diffusion coefficients for a variety of solutes at various 
temperatures and found a value of n varying from 1.43 to 1.93, depending on the 
binary system studied. Our mean values of n again lie within this range. 

As a general conclusion, one can say that the method for measuring mutual 
diffusion coefficients in gases reported earlier’, and the improved sampling technique 
reported here, give fairly accurate values of diffusion coefficients at relatively high 
temperatures. It is therefore suitable for studying the temperature variation of gas 
diffusion coefficients. 

SYMBOLS 

concentration of the solute vapour in the chromatographic column 
(mol cm ~ ‘); 

D 

h 
= 
= 

single, double and triple Laplace transforms with respect to t,, to t, 
and t’, and to t,, t’ and f, respectively; 
mutual diffusion coefficient of A and B (cm2 set-l); 
height of the maximum of extra peaks above the ending baseline (mol 
cm-3); 

Z,P = lengths of the two sections of the chromatographic column (cm); 
L = length of diffusion column (cm); 
m = mass of injected solute A (mol); 
MA, M, = molar masses of solute and carrier gas, respectively (g mol-I); 
N = constant defined by eqn. 2; 
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Po,PI*P = 
P = 

43 = 

t to1 = 

t ’ = 

t z 

t,, th = 
V 

(ViMViA = 

ri = 

x, X’ = 

8 = 

z = 

transform parameters with respect to to, t’ and t, respectively; 
pressure (atm); 
time measured from the injection of solute A to the last backward 
reversal of gas flow (set); 
sum of the times t, and t’ (see); 
time interval of backward flow of carrier gas (set); 
time measured from the last restoration to forward direction of the gas 
flow (set); 
gas hold-up time of column section I or P, respectively (set); 
linear velocity of carrier gas B in the chromatographic column (cm 
set-I); 
atomic volume increments of solute and carrier gas, respectively (cm3 
mol- ‘); 
volume flow-rate of carrier gas (cm3 see-‘); 
distance coordinates measured from one or the other end of the chro- 
matographic column; 
time parameter defined by eqn. 7 (set); 
time defined by eqn. 4 (SC). 
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